
1 

 

Network Analysis and Characterization of Vulnerability in Flood Control 1 

Infrastructure for System-level Risk Reduction  2 

Hamed Farahmand1,*, Shangjia Dong2, Ali Mostafavi1 3 

1 Zachry Department of Civil and Environmental Engineering, Texas A&M University, College 4 

Station, Texas, USA 5 

2 Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 6 

19716, United States 7 

ABSTRACT 8 

The number of catastrophic events such as extreme rainfalls and hurricanes has been growing. These 9 

events pose a major threat to the life safety and economic prosperity of urban regions. Flood control 10 

networks play a pivotal role in mitigating the risk associated with the stormwater generated by extreme 11 

rainfalls and hurricanes. The objective of this study is to propose a framework to examine the 12 

vulnerability in flood control infrastructure networks. This framework applies graph theory concepts and 13 

tools to define a vulnerability index for flood control network components (e.g., channels and rivers). The 14 

topological attributes of flood control networks are used to determine the vulnerability index based on 15 

structural attributes of flood control networks. First, a flood control network is modeled as a directed 16 

graph and storage facilities are incorporated into the network. Second, co-location exposure, upstream 17 

channel susceptibility, and discharge redundancy are characterized as important vulnerability attributes of 18 

a channel in flood control network. Then, these three characteristics are formulized based on the 19 

topological attributes of the network and characteristics of channels. The vulnerability index is then 20 

determined based on the three vulnerability characteristics. The proposed vulnerability index can be used 21 

to evaluate the impact of different risk reduction policies on flood control network vulnerability and 22 

determine the optimal mitigation strategies aiming at flood risk reduction, such as widening vulnerable 23 

channels, placement of storage facilities in the network or increasing the redundancy of the network. The 24 

framework is implemented on two watersheds in Harris County (Texas, USA) and the results’ 25 

implications for decision-making in infrastructure management and hazard mitigation planning are 26 

discussed. The results highlight the capability of the proposed graph-based framework to inform flood 27 

risk reduction through evaluation of the vulnerability of infrastructure networks.  28 

1. INTRODUCTION 29 

Floods have caused a significant proportion of disaster-related economic and human losses [1] and pose a 30 

significant risk to urban infrastructure and community well-being in flood-prone regions [2,3]. It is 31 

projected that flood risk is intensified due to climate change-induced extreme weather events in the future 32 

[4–8]. In addition, rapid urbanization exacerbates flood risk by increasing the proportion of impermeable 33 

surfaces, which leads to higher peak and volume of runoff following an extreme rainfall [9–11]. Flood 34 

control infrastructure networks play a pivotal function in coping with flood risk in urban areas [12]. 35 

Hence. proper functioning of flood control networks can substantially reduce flood risk and impacts [13]. 36 

Flood control infrastructure includes different components such as dams and levees, reservoirs and basins, 37 

pumps and flood gates, and channel network. Flood control networks also include rivers, bayous, and 38 

ditches (all referred to as channels in this paper) whose function is draining stormwater runoff. The 39 

standard way of assessing the urban flood risk is using Hydraulic and Hydrologic models (H&H models) 40 

[14,15]. These models enable estimating the volume of runoff generated by different scenario rainfalls 41 

(such as 100-year and 500-year floods) and simulating the flood inundation in nearby neighborhoods 42 

[16,17]. However, H&H models have two major limitations in terms of informing about the vulnerability 43 
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of flood control networks. First, components of a flood control network have different levels of 44 

vulnerability to disruption during a flooding event. To account for interdependencies in flood control 45 

infrastructure, prioritization of flood risk reduction investments would require analysis of the topology of 46 

flood control networks to identify the most vulnerable components. Second, hydrodynamic models allow 47 

the representation of the flooded depth and the extent of the flooding areas. However, the translation of 48 

such outputs for flood control infrastructure vulnerability assessment is rather limited. For example, the 49 

spatio-topological configuration of the channel network as a system property can significantly affect flood 50 

control performance. The existing H&H models, however, provide limited insights in performing system-51 

level flood control network vulnerability assessment and identifying the vulnerable infrastructure 52 

components for prioritization of risk reduction investments. To address this gap, this paper proposes a 53 

new graph-based methodology for vulnerability assessment of flood control networks. Through the use of 54 

the graph-based methodology, a channel vulnerability index is defined as a combination of three 55 

influencing characteristics: (1) co-location exposure, (2) upstream channel susceptibility, and (3) 56 

discharge redundancy. Each attribute is determined using graph-based network measures. Accordingly, 57 

the output of the proposed methodology identifies vulnerable channels for flood control infrastructure 58 

enhancement to inform hazard mitigation and resilience management plans for flood risk reduction 59 

prioritization.  60 

The remainder of the paper is organized as follows. Section 2 provides a literature review on related flood 61 

control network vulnerability analysis. Section 3 introduces the conceptualization of flood control 62 

network vulnerability and describes the modeling approach for assessment of the vulnerability of 63 

channels using graph theory. Section 4 illustrates the application of the proposed framework in two 64 

watersheds located in Harris County (Texas, USA) and discusses the implications of the results for 65 

policy-making in flood risk reduction.  Section 5 summarizes the conclusions and contribution of the 66 

study and discusses the limitations and future research directions.  67 

2. LITERATURE REVIEW  68 

Flood risk reduction strategies are categorized into four main groups including resistance, avoidance, 69 

acceptance, and awareness strategies [18]. Conventionally, urban areas rely on resistance strategies in 70 

which protective structures such as levees and dams are built to limit the inundation of downstream 71 

regions. However, recent trends show that solely relying on resistance strategies is not effective for flood 72 

risk mitigation [19]. It is generally argued that using a diverse set of strategies increases the redundancy 73 

of the flood mitigation portfolios and leads to optimal risk reduction [20]. In this regard, researchers and 74 

practitioners advocate the effectiveness of avoidance strategies in which the objective is to remove 75 

development or steer it away from the most vulnerable areas and acceptance strategies, which allow 76 

flooding in specific areas or under certain conditions to protect the other areas and provide a relief valve 77 

when the volume of stormwater runoff is extensive [18]. Awareness strategies also focus on enhancing 78 

the knowledge among citizens and decision-makers using tools such as social media outlets, education 79 

and training programs, and workshops. 80 

Flood control infrastructure networks play a pivotal role in devising and implementing avoidance and 81 

acceptance strategies for flood risk reduction. In flood control networks, improving the performance of 82 

the channel network by increasing the discharge capacity of channels is a standard avoidance strategy  for 83 

flood risk reduction [21]. Moreover, flood acceptance is often achieved through the construction of 84 

storage facilities or dedicating open spaces for stormwater retention [22]. Therefore, proper management 85 

of flood control networks can be achieved by focusing on both performance improvement of channel 86 

network and development and maintenance of storage facilities that absorb the excessive stormwater, 87 

which consequently reduces flood risks at the urban scale. 88 
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Performance of flood control networks is a function of the characteristics of different infrastructure 89 

components such as reservoirs, dams, channels, and floodgates [23,24], as well as interdependencies 90 

between the functionality of these different components [25–28]. Hence, vulnerability assessment of flood 91 

control networks would require identifying the components that need to be prioritized to enhance the 92 

performance of the network from a system perspective. For example, prioritizing channels for 93 

enhancement or constructing new storage facilities should not be done based on the impact of the 94 

enhancement project on the component itself, it should rather consider the changes of vulnerability in 95 

other interdependent components of the system. The standard flood risk assessment is often conducted 96 

using H&H models [16,29]. In these models, flow rates are estimated based on employing rainfall-runoff 97 

and streamflow projecting models [15,30], as well as soil properties and topological structure of the flood 98 

control network [31]. However, H&H models provide limited insights from an infrastructure risk 99 

management and vulnerability assessment perspective. First, H&H models do not capture the 100 

interdependencies in the flood control network [26]. Interdependence is a system-level phenomenon in 101 

which the extent to which a component is vulnerable due to the potential negative impacts of other 102 

interconnected components is characterized. Second, flood control networks have complex network 103 

configurations in which the network attributes such as topology of the network is a determinant of the 104 

system vulnerability [32,33]. Hence, network attributes of flood control infrastructure should be 105 

considered in the assessment of vulnerability. Third, although H&H models can identify the high flood 106 

risk regions, the resultant flood risk maps provide limited insights for infrastructure vulnerability 107 

reduction. These flood maps often cannot inform the infrastructure network vulnerability reduction 108 

decisions and help to devise proper strategies to reduce vulnerability from a system perspective. 109 

Infrastructure network vulnerability reduction requires identification of the most susceptible channel 110 

components and also ones that contribute to the vulnerability of the system as a whole [34]. Thus, there is 111 

a need for system-level vulnerability assessment in the flood control network [26] to complement 112 

standard H&H models for infrastructure prioritization towards flood risk reduction at the urban scale.  113 

Modeling infrastructure network as a graph where individual infrastructure components are represented as 114 

links or nodes has been shown as a powerful tool to analyze system attributes and interdependencies 115 

affecting vulnerability [35]. Network analysis has been successfully applied to analyze vulnerability in 116 

various infrastructures such as water, wastewater, road, and drainage networks [36–39]. A limited number 117 

of studies have employed network analysis to examine flood control networks. For example, in the 118 

context of artificial drainage networks, using network properties such as between-centrality, network 119 

analysis has been used to identify sub-networks that can be independently managed [40]. In another 120 

example, the application of network analysis has been shown for finding the optimal location of sensors 121 

that are used to manage and control hydrologic infrastructures located on a flood control network. In this 122 

regard, network properties are used to find the combination of sensors with maximum network coverage 123 

[41]. Network theory and optimization would also help to select the location and size of retention basins 124 

in a watershed, which results in the most cost-effective basin configuration that is also capable of 125 

controlling flood optimally [42]. For pump operation management in retention basins and evaluating the 126 

effect of capacity expansion on the resilience of the drainage network, the analysis of network topology 127 

has been shown to be informative [43]. 128 

In another stream of research, several studies have focused on the application of network analysis for 129 

assessment of vulnerability in the natural and artificial waterway systems. For example, network analysis 130 

has been used for vulnerability assessment of deltaic systems [32], where different topological attributes 131 

of the network have been employed to measure the complex and dynamic characteristics of delta 132 

networks such as structural overlapping and entropy-based complexity [44]. Also, based on the analysis 133 

of topological attributes in a network of channels, Ogie et al. [45] developed a methodology to quantify 134 
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the vulnerability of hydrological infrastructures such as pump stations and floodgates that are located in a 135 

network of waterways [45,46]. Probabilistic network models such as Bayesian network analysis has also 136 

been applied for the flood vulnerability assessment. In the methodology developed by Wu et al. [47], a 137 

Bayesian network analysis approach was used to model temporal flow rates [47].  138 

The review of the literature shows that network analysis can provide valuable insights for the assessment 139 

of vulnerability in interconnected infrastructure that consists of a network of components (such as 140 

channels and waterways). Despite the growing use of network analysis for examining infrastructure 141 

systems and their interdependencies, vulnerability, and resilience, the existing literature lacks a graph-142 

based methodology and relevant measures for analyzing vulnerability in flood control networks to inform 143 

infrastructure prioritization for urban-scale flood risk reduction. Due to the specific characteristics of 144 

flood control networks (e.g., the need for consideration of flow and relationship between upstream and 145 

downstream components), the existing graph-based methodologies (mainly based on percolation theory) 146 

cannot be used for vulnerability assessment of flood control infrastructure. Hence, there is a need for a 147 

graph-based methodology that can capture the characteristics of flood control infrastructure and help to 148 

identify the components contributing to the vulnerability of the systems. To address this methodological 149 

gap, this paper presents a new graph-based methodology to assess flood control network vulnerability. In 150 

the proposed methodology, the vulnerability of channels in flood control networks is characterized based 151 

on the susceptibility and exposure levels from the upstream channels and upstream storage facilities, as 152 

well as the redundancy of the channel to discharge the stormwater runoff. Three network-based measures 153 

are devised and examined to capture and represent the vulnerability of each channel in the network. The 154 

resulting vulnerability index can be used for characterizing the spatial distribution of highly vulnerable 155 

channels to inform flood risk reduction and infrastructure improvement programs. Besides, the results of 156 

the proposed methodology would identify regions that are hotspots of vulnerability and could be a 157 

candidate for the construction of storage facilities in immediate downstream based on consideration of 158 

land availability [41]. Accordingly, the proposed graph-based methodology and measures can 159 

complement the existing H&H models for assessment of the risk of flooding in urban areas. 160 

3. METHODOLOGY 161 

3.1. Vulnerability in Flood Control Networks 162 

Different definitions and measures have been proposed for assessing vulnerability in infrastructure 163 

systems [48–51]. According to Balica et al. [52], in case of flooding, the vulnerability of the system is the 164 

encapsulation of its susceptibility to hazard disruption along with its capability to cope with, recover, 165 

and/or adapt to the hazard. Vulnerability of a system component, in this definition, should capture three 166 

essential attributes: (1) exposure: the extent to which a component is exposed to hazard (such as intense 167 

flow rate); (2) susceptibility: the extent to which a component is susceptible to failure, disruption, or other 168 

predefined adverse condition (such as overflow); and (3) redundancy: to what extent a component has 169 

buffer (such as local retention) to avoid failure.  170 

In case of flood control network vulnerability assessment, the inherent characteristics of each channel 171 

(component), as well as the spatio-topological properties of the network need to be examined. This study 172 

considers the discharge capacity as the most significant inherent characteristic of channels in the 173 

assessment of vulnerability. The analysis of vulnerability also considers three attributes of channels that 174 

are derived from the position of the channel in the network topology. A combination of these three 175 

attributes along with the discharge capacity can be used for characterizing the vulnerability of a channel. 176 

In this context, the exposure and susceptibility of channels are attributed to the volume of stormwater in 177 
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the upstream of the channel.  However, there are three inherently different sources of hazard-causing 178 

exposure and susceptibility for a channel as explained below. 179 

Susceptibility: Stormwater runoff in the channels in the upstream of a channel pose a risk to the 180 

downstream channel. The stormwater runoff from the upstream can potentially cause an overflow in the 181 

downstream channel and surrounding neighborhoods [32,44]. The greater the volume of stormwater in the 182 

upstream channels, the greater the exposure to the flood risk in the channel. In addition, the higher 183 

relative capacity of a downstream channel compared to channels in upstream means that the channel is 184 

less susceptible to the increased flow in the upstream channels.  185 

Exposure: Stormwater runoff stored in storage facilities (such as retention basins or reservoirs) in the 186 

upstream of a channel exposes the channel to a significant surcharge of stormwater if the generated 187 

stormwater runoff exceeds the capacity of the facility. In other words, the channel is also at risk of 188 

overflow in case of an exceedance of stormwater runoff from the capacity of storage facilities in the 189 

upstream. Hence, exposure is a function of proximity to the storage facility in the upstream and the risk of 190 

overflow in the facility. The risk of overflow is also a function of the volume of stormwater that the 191 

storage facility is designed to absorb (i.e., stormwater runoff in the upstream of the facility), as well as the 192 

capacity of the storage facility to store stormwater runoff.  193 

While exposure and susceptibility increase the vulnerability, there is another attribute (i.e., redundancy) 194 

that reduces the vulnerability of a channel. Redundancy is a positive attribute of a component or a system 195 

capturing the extent of buffer in case of a disruption. For the case of the flood control network, 196 

redundancy is characterized as follows: 197 

Redundancy: Redundancy refers to the ability of a channel to properly discharge the stormwater runoff 198 

flow to the downstream [24]. The redundancy is a function of (1) the number of alternative paths that the 199 

channel relies on to discharge the runoff and (2) the possibility of blockage in stormwater discharge (If a 200 

channel is close to a sink node such as a storage facility or an outlet, the channel is subject to less flood 201 

risk due to the blockage in the downstream channels). In other words, building a storage facility in the 202 

downstream increases the redundancy of channels in the upstream by absorbing the risk of blockage in the 203 

downstream channels.  204 

3.2. Modeling Flood Control Network using Graph Theory 205 

In modeling the flood control network as a directed graph, each elements of vulnerability can be 206 

formulated based on the definitions provided in the previous section and utilizing channel characteristics 207 

and network topology. A flood control network consists of a set of spatially connected channels that drain 208 

stormwater runoff generated by extreme rainfalls to the outlet(s) (which are either naturally existed or 209 

artificially built to prevent inundation and overflow in the neighborhoods). Considering each channel as 210 

an edge, a flood control network can be modeled as a graph � = (�, �),  in which channels are the links 211 

� ⊆ 	
��|
�� ∈ ���, and nodes � = ���, ��, … , ��� are the joints connecting the channels or storage 212 

facilities.  In addition, there is generally no loop in gravity-based flood control systems. Hence, a flood 213 

control network can be modeled as a Directed Acyclic Graph (DAG). Figure 1 shows a schematic 214 

representation of the DAG model of a flood control network. In the DAG model, edges are the channels 215 

and the discharge capacity of edges can be attributed to the weight of edges. For example, in Figure 1, 216 

where channel weights are shown on the channels, the discharge capacity of channel bc (0.2) is twice 217 

more than the discharge capacity of channel ab (0.1). Nodes in the DAG model of channel networks can 218 

have different attributes. For example, nodes can represent transition points where channel capacities 219 

changes, channel intersections, basins, or outlets. In the DAG model of the flood control network, edges 220 



6 

 

have different attributes such as length and flow capacity that can be used to characterize vulnerability. 221 

Flow capacity is the maximum rate of discharge that a channel can provide.  222 

 223 

Figure1. Modeling a network of channels as a Directed Acyclic Graph (DAG) consist of channels with different capacities 224 
and different types of nodes 225 

For calculation of vulnerability attributes, we applied topological ordering in the DAG model of channels. 226 

For graph � = (�, �), an ordered list of nodes Ω = ���, ��, … , ��� is called a topological ordering if for 227 

all edges ���� ∈ Ω, then � < �. Algorithm 1 can be used to perform topological ordering in a DAG and 228 

generate a sorted listed of nodes in a graph [53]. A sorted list of a directed graph can ease determining the 229 

set of channels and storage facilities in the upstream and downstream of a channel and facilitates the 230 

calculation of attributes that are defined to characterize vulnerability in flood control networks in this 231 

study. In the following sub-section, we formulate the vulnerability attributes described in Section 3.1, and 232 

then, combine these three attributes to devise a channel vulnerability index. 233 

Algorithm 1. Topological Sorting of Graph G 

Procedure Topological Sort  

   Input: �(�, �) #G is a directed graph, and d is the ordered set of node indexes of G 

1   set all nodes to be unindexed 

2   for � =  1, … , � 

3      select any unindexed node � that all its parents are unindexed 

4       (�) ← � 
5      Mark � 

6   Return: ( ) 

 234 

3.3.  Formulization of Channel Vulnerability in Flood Control Network 235 

3.3.1.  Co-location Exposure 236 

Overflow risk exposure in co-located storage facilities in the upstream can contribute to a channel’s 237 

vulnerability [54]. In this framework, we consider the overflow risk of a storage facility based on the ratio 238 

of the stormwater volume in its upstream to its storage capacity as follows: 239 

Г# =  �$%&'()
#
*+%#

  (1) 240 

 Where Г# represents overflow risk of a storage facility b, �$%&'()
# is the volume of stormwater that 241 

can be stored in the channels in the upstream of facility b, and *+%# is the capacity of facility b. The 242 

lower the ratio, the more capable the facility to absorb the upstream stormwater and prevent overflow in 243 

the downstream channels. From a flood control perspective, storage facilities such as retention basins can 244 
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be designed and constructed to reduce the risk of overflow in the downstream by collecting the runoff 245 

generated in the upstream. In case the runoff inflow exceeds the design capacity of the facility, the 246 

downstream channels are exposed to risk of excessive flow that could cause overflow. Therefore, to 247 

characterize the exposure for a channel, we need to know (1) the storage facilities in its upstream and the 248 

distance between them, which impacts the exposure risk, and (2) the exposure risk of the facilities that 249 

contributes to the vulnerability of the channel. Considering these two factors, we designed Algorithm 2 250 

for quantifying the co-location exposure risk of each channel. 251 

Algorithm 2 presents the procedure for calculating Co-Location Exposure (CLE) in each channel. The 252 

procedure can be divided into three steps. First, the overflow exposure for each storage facility is 253 

calculated (sub-algorithm 2.1) by summing up the storage capacity of all the upstream channels, which 254 

for each channel is the volume of stormwater that can be stored in the channel. For example, in the 255 

channel network in Figure 1, exposure for storage facility b is equal to the storage capacity of channel ab 256 

that equals the length of channel ab multiplied by the area of the channel cross-section. For storage 257 

facility l, all the channels in its upstream contribute to the exposure of the facility, which include all 258 

channels in the network except channel ab and channels km and lm. Then, for each channel, the storage 259 

facilities located in the upstream of the channel are identified (sub-algorithm 2.2). Finally, the CLE of a 260 

channel is calculated given the overflow exposure of its upstream storage facilities and the distance 261 

between the channel and the storage facility ( �'�,#), by summing over all upstream facilities (sub-262 

algorithm 2.3). for example, in Figure 1, both facilities b and l contribute to the CLE of channel lm, while 263 

only facility b is considered for calculation of C=the CLE of channel ci, and there is no facility 264 

contributing to the CLE of channels in the upstream of node h. It should be noted that for the calculation 265 

of overflow risk for a facility, only the channels that are located between the facility and facilities in the 266 

upstream are calculated. The assumption is that each storage facility absorbs the stormwater runoff for all 267 

channels in its upstream, and therefore, no risk exposure would be transferred to the other storage 268 

facilities in downstream. However, it should be noted that this assumption does not consider cases that 269 

multiple storage facilities may fail concurrently and overflow in the upstream facility can impact the 270 

facility in downstream. Integration of concurrent failure risk should be addressed in the future research. 271 

Algorithm 2. CLE Calculation for Graph , 

Procedure: CLE Calculation 

   Input: χ(�, �, ., /), 0 ⊂ � ,         # B includes storage facilities, and   is topological-sorted of 2, . includes 

lengths of channels, and / includes areas of cross-section of channels 

# sub-algorithm 2.1: calculating exposure of each facility 

1   for  3 in   

2      if  3 is in 0 

3         4%'5)
+6 (3) = [] #Upstream includes all channels in the upstream of channel b 

4         4%'5)
+6 (3) ← all edges in upstream ⊂ � 

5         �$%&'()
 (3) ←sum over / × . :&) edges in 4%'5)
+6 (3) 

6         remove 4%'5)
+6 (3) from � 

# sub-algorithm 2.2: assign storage facilities of each channel 

7   for � in � 

8      ;<(�) ← storage facilities in upstream of � #SF contains storage facilities in upstream of the channel 

# sub-algorithm 2.3: calculate CLE for each channel 

9   for � in � 

10    for 3 in ;<(�) 

11        �'�,#  ← node distance between � and 3 # �'�,# is the topological distance between channel and the 

storage facility  

12       *=� (�)+=  �
?�@A,B

× (1 + CDEFGHIJ (K)
LME (K) ) 

13 Return: χ 

 272 
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3.3.2.  Upstream Channel Susceptibility 273 

Flow dynamics of flow transport is one of the factors greatly influence the vulnerability of the channels in 274 

flood control networks. H&H models quantify flow transport dynamics using the differential equations as 275 

well as hydrology and surface characteristic inputs. In this study, we adopted the approach developed by 276 

Tejedor et al. (2015) [32] to consider the transport dynamics in graph-based analysis of river and channel 277 

networks. To do so, we developed Upstream Channel Susceptibility (UCS) index that examines the extent 278 

to which a change in flow of upstream channels can impact the flow of a channel by aggregating impacts 279 

that the flow from all its upstream channels inflict on the channel of interest. Algorithm 3 shows the 280 

calculation procedure. To calculate the UCS value for each channel, first, a fixed percentage of increase 281 

in the flow of the channel is considered (N). The influence of upstream channel ( on the susceptibility of 282 

channel � is denoted by O�P
Q

, which shows the ratio of increase in flow of channel ( that leads to increase 283 

in flow of channel � in the downstream of ( by ratio N. In this calculation, it is assumed that the flow of 284 

channel i is influenced by channels that are in the upstream of channel � but not in the upstream of any 285 

storage facility that channel � is exposed to. In fact, the influence of channels in the upstream of any 286 

storage facility that channel � is exposed to considered to be absorbed by the facility and the risk of 287 

overflow is reflected in the calculation of CLE.   For example, in Figure 1, the flow in the channel ci is 288 

influenced by the changes in the flow of channels bc and dc, and the influence of channel ab is considered 289 

in the CLE of the channel that considers the overflow risk of facility b. 290 

A high UCS value means that a channel is susceptibility to the increase in flow of channels in the 291 

upstream. A high UCS value can be due to: (1) lower capacity of a channel compared to the channels in 292 

the upstream and (2) the channel being linked to a large number of channels in the upstream. To reduce 293 

the UCS, additional storage facilities can be added in the upstream of the channel to reduce the number of 294 

channels in the upstream whose flows lead to the downstream channel. Increasing the downstream 295 

channel capacity can also reduce its susceptibility. Thus, the UCS measure also captures the extent to 296 

which an increase of discharge capacity in a channel leads to an increase in the vulnerability of other 297 

channels in the downstream. Accordingly, the UCS measure informs infrastructure enhancement 298 

decisions considering the system-level impacts of the decision rather than focusing on the regional 299 

consequence of an enhancement project. 300 

Algorithm 3. UCS Calculation for Graph , 

Procedure: UCS Calculation 

   Input: χ(�, �, ., /), 0 ⊂ � ,   , N      # B includes storage facilities, and   is topological-sorted of 2, . 
includes lengths of channels, and / includes areas of cross-section of channels 

1 for 
 in � 

2    ;<(
) ← storage facilities in upstream of <R(
) # <R(
) is the start node of the channel 
 

3         S ← Reversed ( ) #reversed of the topological ordered list of nodes in the channel network 

4         4%'5)
+6 (
) ← 
 T
 in S that is in 4%'5)
+6 <R(
) and not in ⋃ (4%'5)
+6 (�))�⊂VW(X)   

5          YZ[ ( in 4%'5)
+6 (
) 

6            ��\)
+'
  (()  = (1 +  N) × *+%+\�5] (
) 

7            )
 (\
*+% (()  =  6�� ('(6 ^*+%+\�5]_+ �+\
�5' (()`, 0.9 × *+%+\�5]_�
�Tℎ3&)(()`e)  
8            4*; (
) += _��fgXh@X? (P)i    gX?PfXjhk (P)`

��fgXh@X? (P)  

9       Return: χ 

 301 

3.3.3. Discharge Redundancy 302 

Discharge Redundancy (DR) of a channel depends on the number of sink nodes that the channel can drain 303 

to (i.e., outlets and basins in the downstream). DR captures the redundancy of the channel to discharge 304 

stormwater runoff in case of a disruption in the downstream. Any disruption in the downstream of a 305 

channel influences the stormwater flow in the channel and can cause runoff propagation into the 306 
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neighborhood. For example, blockage of channels in the downstream due to sediment or debris 307 

accumulation could lead to overflow in upstream channels. Two factors could impact the redundancy of a 308 

channel. First, the higher number of paths to sink nodes increases the discharge redundancy since, in case 309 

of blockage in a path, an alternative path can discharge the stormwater flows downstream. Second, 310 

discharge redundancy is influenced by the distance between a channel and sink nodes. In this regard, any 311 

downstream blockage could cause runoff backpropagation. The risk of blockage is associated with the 312 

length and size of the channels that connect the channel to the sink node. A longer and larger channel 313 

poses higher risk of blockage [4]. DL is calculated by assigning weights to different paths between 314 

channels and sink nodes, where path’s weights are functions of the distance between the channel and the 315 

sink node. Thus, discharge redundancy is calculated by assigning weights to different paths between 316 

channels and sink nodes, where a path’s weights is a function of the distance between the channel and the 317 

sink node. The summation of the weighed paths, then, determines the discharge redundancy of a channel. 318 

Algorithm 4. DR Calculation 

Procedure: DR Calculation 

     Input: χ(�, �, ., /), 0 ⊂ � ,  # B includes storage facilities, and   is topological-sorted of 2, . includes 

lengths of channels, and / includes areas of cross-section of channels 

1   ;��l ←  χ. &(5.
5', 0  #Sink includes the outlet of the channel network (node with outdegree equal 

zero) 

2   for 
 in � 

3      for ' in ;��l 

4          If  haspath (χ, mR(
), ') # mR(
) is the end node of the channel e 

5               = |%+5ℎ(mR(
), ')| #d is the topological length of path between the channel and the outlet 

6              no(
) +=  p( ) # w(d) is the weighted value of d 
7   Return: χ 

 319 

3.3.4. Channel Vulnerability Index 320 

The vulnerability of a channel is a function of CLE, UCS, and DR. CLE and UCS would increase the 321 

channel vulnerability while DR would reduce its vulnerability. Accordingly, we characterize the channel 322 

vulnerability index s using Equation (2) [55].  323 

sX = :(*=�X , 4*;X , noX) =  *=�X × 4*;X
noX

(2) 324 

The channel vulnerability index calculated using Equation (2) evaluates the vulnerability of channels 325 

from a system-level perspective considering the structural and topological characteristics of the channel 326 

network, as well as characteristics of each channel that impact its ability to discharge stormwater without 327 

an occurrence of overflow in the neighborhood of the channel. It should be noted that the proposed 328 

approach for vulnerability assessment is based on characteristics of physical infrastructure and does not 329 

consider rainfall scenarios. In fact, the vulnerability assessment framework presented here aims at 330 

identifying the channels and areas in the network that need to be prioritized for channel improvement or 331 

basin construction projects that reduces the risk of inundation in the area regardless of the extent of 332 

hazards such as rainfall duration and peak value, as well as distribution of rainfall.  333 

4. FLOOD CONTROL NETWORK VULNERABILITY IN HARRIS 334 

COUNTY  335 

The application of the proposed methodology and measures was demonstrated in two major watersheds in 336 

Harris County, Texas (USA). Harris County is the third-largest county in the United States and has more than 337 

4,023 km of channels in its flood control network. It comprises 22 watersheds, all of which drains into 338 

Galveston Bay. The flood control system in Harris County performs well under normal rainfall. Extreme 339 
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weather events such as hurricane Harvey, however, can pose a great risk to the county and cause urban 340 

flooding. Using the proposed graph-based method and measures, we examined the flood control network 341 

vulnerability in two major watersheds in Harris County: Brays bayou and Greens bayou watersheds. Both of 342 

these watersheds experienced extensive floods over the past decade including Tax Day Flood (2016), 343 

Memorial Day Flood (2016), and Hurricane Harvey (2017). Table 1 shows the characteristics of the 344 

studied watersheds.  345 

Table 1. Characteristics of Brays bayou and Greens bayou Watersheds [56] 346 

Characteristic 
Watershed 

Brays bayou Greens bayou 

Drainage Area (sq. Miles) 127 212 

Open Streams (Miles) 12 308 

Population (2010 U.S. Census) 717,198 528,720 

Primary Streams Brays bayou 

Keegans bayou 

Willow Waterhole bayou 

Garners bayou 

Greens bayou 

Halls bayou 

Reinhardt bayou 

 347 

4.1. Analysis Procedure 348 

To demonstrate the application of the graph-based methodology and measures in the two watersheds in 349 

Harris County, we use the procedure presented in Figure 2. First, we collected and processed the GIS data 350 

of the flood control networks in the watersheds. Flow capacity of channels as well as location and storage 351 

capacity of the storage facilities were estimated. Then, the network of channels was constructed using the 352 

GIS data of the network. The network was modified in order to remove errors such as incorrect flow 353 

directions, disconnected polylines, and mismatched intersections. Storage facilities were incorporated in 354 

the network model, and then, different attributes of vulnerability as well as the vulnerability index were 355 

calculated for each channel using the algorithms elaborated in the previous section. Finally, the results 356 

were mapped and examined in order to assess the vulnerability of the flood control network in the study 357 

area form a system-level perspective, and the implications of results for infrastructure vulnerability 358 

reduction were identified. 359 
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 360 

 361 

Figure 2. Overview of the Proposed Framework 362 

4.2. Data Collection and Network Modeling 363 

The capacities of channels were estimated using the Manning equation (Equation (3)): 364 

                                                  (uf)�� = v
���

× (/��)
�
w × (o��)

�
� × (;��)

�
�                                                              (3) 365 

 Where (uf)�� is the flow capacity of channel ij, v is a constant, ��� is manning coefficient for channel ij, 366 

/��  is the area of cross-section of channel ij, o�� is the hydraulic radius of channel ij, and ;�� is the slope 367 

of the channel ij. For the channels with missing data, the capacity of adjacent channels was used to 368 

estimate the discharge capacity. Figure 3 schematically shows the distribution of channel capacities in 369 

two watersheds.  370 

 371 

 372 
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(a) (b) 

Figure 3. Capacity of Channels in the Flood Control Network 373 

Figure 4 shows the map of the flood control network and the storage facilities in the study area. Flood 374 

control network data of the two studied watersheds in Harris County is provided by Harris County Flood 375 

Control District (HCFCD) [56], including channel characteristics, the geographic location of each 376 

channel, as well as the connection of channels. In addition, the storage facility data were collected 377 

through organizational websites and reports. We mapped the information to its closest node in the 378 

network [56]. The storage capacity of the facilities was also gathered from the official documents 379 

(summarized in Table 2). For the missing data, the capacity was estimated based on the area of the 380 

facility. Based on abstracting the flood control network and modeling it as a DAG, there are 224 nodes 381 

and 223 edges in Brays bayou watershed and 692 nodes and 691 edges in Greens bayou watershed.  382 

Table 2. Characteristics of Bains in Brays Bayou watershed 383 

Major Retention Basin Capacity (yz{ × |}~) 

Brays bayou watershed  

Old Westheimer 200 

Eldridge 1,500 

Willow Waterhole 600 

Arthur Story Park 1,100 

Greens bayou watershed  
Kuykendahl  757.6  

Glen Forest 291.3 

Cutten 300* 

Halls Park 231 

Antoine 538 

Lauder 391 

Aldine Westfield 407.3 

Verde Forest 1,360 

Lower Greens bayou 765.4 
   *estimated (no data available) 384 
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 385 

Figure 4. Study Area and Topology of Flood Control Network 386 

4.3. Flood Control Network Vulnerability Assessment  387 

In this section, the results related to implementing the proposed framework for vulnerability assessment 388 

of flood control network in the study area are presented. The three attributes of vulnerability are 389 

calculated for all channels in the study area, results are mapped, and discussed. Moreover, the 390 

implications of the results for decision-making in infrastructure vulnerability reduction are discussed. 391 

4.3.1. Co-location Exposure Mapping 392 

Figure 5 shows CLE for channels in Brays bayou and Greens bayou watersheds. In Brays bayou 393 

watershed, it can be seen that the channels that flow to the bayou have low CLE (box a). The result 394 

indicates that the storage facilities are located in this region are capable of absorbing the stormwater 395 

runoff in the upstream. In the Waterhole bayou, however, there are channels with medium CLE located in 396 

the downstream of the storage facility (box b). It indicates that the facility requires more capacity to 397 

absorb the upstream runoff in case of a flood. In addition, in the Central part of Brays bayou and in the 398 

downstream of the Aurthr Story Park basin (box c) the CLE is relatively high. Although the basin may be 399 

able to properly absorb the low-intensity rainfall, however, the high CLE shows that the downstream of 400 

the basin are vulnerable due to the overflow of the basin in case of extreme rainfalls. In the Greens bayou 401 

watershed, high CLE can be observed in the downstream, specifically, in the neighborhood of the Lower 402 

Green bayou basin (box d). The high value of CLE is due to the high overflow risk from the co-located 403 

basin. Also, CLE in the downstream of the basin located in Halls bayou is high, and consequently, the 404 

CLE for the channels in the downstream of the intersection of the Garners bayou and Halls bayou is 405 

impacted by the co-location effect between the two bayous (box e). This result shows an example of the 406 

impact of network topology on the vulnerability of channels. 407 
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(b) 

Figure 5. CLE Map for two watersheds’ channels; (a) Brays bayou and (b) Greens bayou 408 

4.3.2. Upstream Channel Susceptibility Mapping  409 

In the next step, we calculated the upstream channel susceptibility (UCS). Figure 6 shows the UCS map 410 

of the study area. As shown in Figure 6 (a), the UCS in Brays bayou is significantly higher in the 411 

mainstream of Brays bayou (box a) compared to the other channels that flow into the mainstream. This 412 

result shows the extent to which the susceptibility of each channel is affected by its position in the 413 

network topology. In the case of Brays bayou, the construction of basins would be a proper policy to 414 

absorb the impact of upstream channels. However, the space limitation for the construction of large basins 415 

often leads to reliance on channel enhancement and widening. Such projects currently form a majority of 416 

flood risk reduction projects in Brays bayou watershed [57]. It is also worth noting that the presence of 417 

storage facilities, which are responsible for absorbing the influence of upstream channels’ susceptibility 418 

leads to low UCS in the Northwest of the watershed (box b). 419 

Figure 6 (b) shows the UCS map for the Greens bayou watershed. As opposed to Brays bayou, Greens 420 

bayou is formed by smaller sub-network of channels that converge in the downstream of the watershed. 421 

Therefore, the distribution of UCS is sparser throughout the watershed. However, the mainstream of 422 

Greens bayou and Halls bayou have channels with high UCS (box c). The topology of the sub-network, 423 

which has a similar structure as Brays bayou watershed and lack of any storage facility contributes to the 424 

high UCS in this mainstream. Also, the Northwest of the watershed (box d) has generally low UCS due to 425 

the presence of storage facilities that can control the increase of flow in the upstream channels.  426 
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(b) 

Figure 6. UCS Map for two watersheds’ channels; (a) Brays bayou and (b) Greens bayou 427 

4.3.3. Discharging Redundancy Calculation 428 

Discharge redundancy was also calculated for channels in the network. Channels in the Northwest part of 429 

Brays bayou watershed have generally higher DR, however, channels in the upstream of the main branch 430 

of Brays bayou have generally less redundancy. This is due to the fact that these channels have high 431 

distance from the outlet and there is no alternative sink node in their downstream. In the Greens bayou 432 

watershed, considering the impact of storage facilities and the outlet, the DR for a majority of channels in 433 

Greens bayou is high, while in the contrary, channels in Halls bayou and Garners bayou have lower 434 

redundancy. Generally, the flood control network in Brays bayou and Greens bayou are tree-like; 435 

therefore, the number of different paths to sink nodes is one, which reduces the discharge redundancy of 436 

channels.  437 

4.3.4. Flood Control Network Vulnerability Index 438 

Combining the impacts of co-location exposure, upstream channel susceptibility, and discharge 439 

redundancy, the vulnerability index created in this study can represent the overall vulnerability of 440 

channels. Figure 7 shows the channel vulnerability index for Brays bayou and Greens bayou watersheds. 441 

The results show that in the Northwest of Brays bayou watershed (box a), the vulnerability index is low, 442 

which is due to the presence of well-distributed storage facilities with sufficient capacity to absorb the 443 

upstream stormwater runoff (providing discharge redundancy for the channels in the upstream). The 444 

channel sections in the mainstream of the Brays bayou are highly vulnerable. In the region close to the 445 

intersection of Keegan bayou and Brays bayou (box b), the main cause of the vulnerability is the high 446 

distance to sinks and the presence of a basin with high overflow risk in the vicinity. Although these 447 
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impacts are reduced in the downstream channels, the absence of any storage facility increases UCS. A 448 

common approach for vulnerability reduction in such cases would be enhancing channel flow capacity. 449 

However, any increase in the flow capacity of channels in the upstream would increase the susceptibility 450 

of channels in the downstream. In this case, upstream channels would be able to collect a high volume of 451 

stormwater runoff, however, the downstream would not be able to drain the excessive volume of runoff 452 

collected by the upstream channels, and therefore, overflow would be expected. Consequently, any 453 

enhancement project needs to consider the impact of network topology on the vulnerability in the network 454 

instead of focusing on increasing flow capacity in a specific region. 455 

A similar pattern can be seen in the Greens Bayou watershed (Figure 7 (b)). The proper distribution of 456 

basins with sufficient storage capacity led to a low vulnerability in the Northwest of the watershed (box 457 

c). On the contrary, the lack of storage facilities as well as the configuration of channels in the Southwest 458 

part (box d) led to the formation of clusters of vulnerable channels. A similar situation is observed in the 459 

Northeast part of the Greens bayou watershed (box e). The presence of Lower Green bayou and Verde 460 

Forest basins that are capable of absorbing excessive runoff has reduced the vulnerability in the middle 461 

part of the Garners bayou (box f).  462 

 

 
(a) 

 

 
(b) 

Figure 7. Vulnerability for Flood Control Channels in (a) Brays bayou, and (b) Greens bayou 463 



17 

 

4.4. System-level Flood Risk Reduction Implications 464 

System vulnerability results from its intrinsic characteristics and the decisions made by managers and 465 

operators. Proper vulnerability assessment should (1) help practitioners and decision makers to better 466 

understand the causes and profile of vulnerability in the system and (2) enable evaluating the impacts of 467 

different policies on the vulnerability reduction. The proposed framework achieves both criteria by 468 

examining vulnerability from a system perspective. For example, we discussed the potential of enhancing 469 

channels and construction of storage facilities as a structural solution for vulnerability reduction in the 470 

flood control network. However, construction of storage facilities often requires availability of open land, 471 

which might not be feasible in metropolitan areas due to limited spaces. Hence, prior to recommending 472 

construction of retention basins, we may need to assess limitations for policy implementation. In this 473 

paper, we used road density as an indicator of open space availability to assess the feasibility of storage 474 

facilities in a watershed. The association between road density and urban expansion [5] proves that road 475 

density is a proper structural indicator for land use transition, as a higher density of road network 476 

indicates a lower open space availability [58]. To examine the feasibility of retention basin development 477 

for reducing upstream susceptibility, we overlaid the vulnerability map of flood control network in 478 

Greens bayou watershed with the road density map (aggregated in census tract level), measures in 479 

Miles/Sq. Miles unit, as shown in Figure 8. It can be seen that, although the construction of a storage 480 

facility can reduce the vulnerability of channels in the downstream of Halls bayou (box a), it is practically 481 

infeasible due to the unavailability of open spaces. On the contrary, the channels located in the 482 

downstream of the intersection of the Garners bayou and Greens bayou (box b) have low vulnerability, 483 

which is due to the presence of storage facilities. The road density map shows that the construction of 484 

these facilities was a feasible option in these areas. Similarly, in the Southwest of the watershed, the 485 

construction of storage facilities may reduce the vulnerability of channels since the map shows that there 486 

should be sufficient open spaces in the region. 487 

 488 

Figure 8. Flood control network vulnerability vs. road density in Greens bayou 489 

5. CONCLUDING REMARKS 490 

This paper presents a graph-based methodology and measures for analyzing and characterizing 491 

vulnerability in flood control infrastructure (e.g., channels and rivers). The proposed methodology departs 492 

from the existing H&H models for analyzing urban-scale flood risk due to: (1) its focus on flood control 493 

systems to inform infrastructure prioritization; (2) its capability to capture structural topology and 494 

interdependencies among different channels in assessment of vulnerability; (3) its characterization of 495 

vulnerability based on three fundamental attributes: Co-Location Exposure (CLE), Upstream Channel 496 
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Susceptibility (UCS), and Discharge Redundancy (DR); (4) its ability to examine system-level effects of 497 

risk reduction measures; and (5) its ability to evaluate channel vulnerability without the need for 498 

extensive data and computational resources and efforts (as usually required in H&H modeling).  499 

The application of the proposed methodology and measures in two watersheds in Harris County shows 500 

the capability of the proposed vulnerability characterization framework and index in identifying the 501 

vulnerable channel components. The results of the case study show that, other than the properties of 502 

channels and network structure, storage capacity can significantly impact the spatial patterns of 503 

vulnerability in the flood control network. For example, the Northwestern region of Greens bayou 504 

watershed presents lower vulnerability due to the presence of distributed storage facilities. In the 505 

downstream of the Garners bayou, the abundance of open spaces for storage of runoff contributes to the 506 

low vulnerability of channels in this region. In densely urbanized areas such as the downstream of Halls 507 

bayou where the construction of storage facilities in not feasible, channel enhancement would be a more 508 

feasible infrastructural solution. However, the impact of channel capacity increase on downstream 509 

channels should be considered.  510 

H&H models provide valuable insight for the determination of inundated areas and assessment of 511 

damages. However, from the infrastructure management and hazard mitigation perspective, there is a 512 

critical need for identifying the causes of such vulnerabilities in flood control network. In fact, the results 513 

of the H&H models enable accurately determining the expected inundation maps and estimating flood 514 

damages, which help preventing damages by avoiding further urban developments in areas with higher 515 

risk of inundation and preparing emergency response needs for areas with high risk of inundation and 516 

damage. However, from flood control infrastructure perspective, practitioners need to have a better 517 

understanding regarding why a specific area has risk of inundation and how flood control network can be 518 

improved in order to reduce the risk. The proposed framework enables vulnerability assessment and cause 519 

identification and helps policy feasibility evaluation for risk reduction (e.g., development prioritization, 520 

channels widening, storage facilities placement, storage capacity expansion, and redundancy building). 521 

This all attributes to the proposed graph-based vulnerability index that encapsulates the impact of network 522 

topology and storage facility on flood control network vulnerability. Hence, the proposed method and 523 

measures can provide useful tools for decision-makers to effectively allocation limit resources to 524 

infrastructure investments that systemically reduce vulnerability in different watersheds (or systems of 525 

watersheds). 526 

The proposed framework and this study present multiple avenues for further development in future 527 

research. First, land characteristics such as the proportion of impervious surface, land slope, and 528 

development pattern of each channel can be included in determining the overflow risk calculation. This 529 

study aimed to assess the vulnerability for channels from a system-level perspective considering 530 

topological network properties, and therefore, it does not consider any specific rainfall scenario for the 531 

analysis. The outcomes of the H&H models can be integrated with the proposed vulnerability assessment 532 

framework to examine the vulnerability in channels given different flooding scenarios (under different 533 

rainfall intensities). In addition, a probabilistic scheme for considering flow change in each channel can 534 

be included to encapsulate the flow dynamics of the flood control network. Moreover, future research can 535 

consider the flow impact from hydrological factors, as well as the risk of overflow. For example, type of 536 

the channel (i.e., meandering or straight) can greatly impacts the flow rate [56].  Hence, future research 537 

can examine the impact of such factors on the vulnerability quantification. Finally, a system-level 538 

vulnerability assessment can provide insight for decision makers to identify vulnerable components that 539 

exacerbate the vulnerability of the whole system. However, prioritization of corresponding mitigation 540 

actions requires a thorough understanding of the potential impacts (e.g., losses related to population, 541 
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environmental impacts) of different flood scenarios. Therefore, a combined system-level vulnerability 542 

assessment and flood impact analysis will be conducted in our future research to enable the identification 543 

of targeted mitigation actions based on their contribution to the reduction of flood impact. 544 
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